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Extra-solar planet census



Exoplanets

Available for free on the AppStore.



Period ratio distribution
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Rein, Payne, Veras & Ford (2012)



Planet formation



Planet formation

Image credit: NASA/JPL-Caltech 



Planet migration

Low mass planet, type I migration, Prometheus code



Formation scenario for HD45364

Rein, Papaloizou & Kley 2010

H. Rein et al.: The dynamical origin of HD 45364
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Fig. 2. The semi-major axes (top), period ratio P2/P1 (middle), and ec-
centricities (bottom) of the two planets plotted as a function of time in
dimensionless units for run F5 with a disc aspect ratio of h = 0.07. In
the bottom panel, the upper curve corresponds to the inner planet.
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Fig. 3. A surface-density contour plot for simulation F5 after 100 orbits
at the end of the type III migration phase. The outer planet establishes
a definite gap, while the inner planet remains embedded at the edge of
the outer planet’s gap.

similar properties to those described above when making com-
parisons with observations.

It is possible that the solid cores of either both planets or just
the outer planet approached the inner planet more closely than
the 2:1 commensurability before entering the rapid gas accre-
tion phase and attaining their final masses prior to entering the
3:2 commensurability. Although it is difficult to rule out such
possibilities entirely, we note that the cores would be expected
to be in the super earth mass range, where in general closer
commensurabilities than 2:1 and even 3:2 are found for typical
type I migration rates (e.g. Papaloizou & Szuszkiewicz 2005;
Cresswell & Nelson 2008). One may also envisage the possibil-
ity that the solid cores grew in situ in a 3:2 commensurability, but
this would have to survive expected strongly varying migration
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Fig. 4. The semi-major axes (top), period ratio P2/P1 (middle), and ec-
centricities (bottom) of the two planets plotted as a function of time in
dimensionless units for run F4 with a disc aspect ratio of h = 0.04. In
the bottom panel, the upper curve corresponds to the inner planet.
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Fig. 5. A surface-density contour plot for simulation F4 after 150 orbits
after the planets went into divergent migration. The inner planet is em-
bedded and interacts strongly with the inner disc. The simulation uses
a 1D grid for 0.04 < r < 0.25.

rates as a result of disc planet interactions as the planets grew
in mass.

An issue is whether the embedded inner planet is in a rapid
accretion phase. The onset of the rapid accretion phase (also
called phase 3) occurs when the core and envelope mass are
about equal (Pollack et al. 1996). The total planet mass depends
at this stage on the boundary conditions, here determined by
the circumplanetary flow. When these allow the planet to have a
significant convective envelope, the transition to rapid accretion
may not occur until the planet mass exceeds 60 M⊕ (Wuchterl
1993), which is the mass of the inner planet (see also model J3
of Pollack et al. 1996; and models of Papaloizou & Terquem
1999). Because of the above results, it is reasonable that the in-
ner planet is not in a rapid accretion phase.
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Formation scenario leads to predictions 
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Rein, Papaloizou & Kley 2010



Saturn is a smaller version of the Solar System



Stochastic Migration

REBOUND code, Rein & Papaloizou 2010, Crida et al 2010



Radial velocity planets
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Cumulative period 
ratio in multi-
planetary systems

• Periods of systems with 
massive planets tend to 
pile up near integer 
ratios

• Most prominent 
features at 4:1, 3:1, 2:1, 
3:2

Rein, Payne, Veras & Ford (2012)



Kepler's transiting planet candidates
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• Period ratio 
distribution much 
smoother for small 
mass planets

• Deficiencies near 4:3, 
3:2, 2:1

• Excess slightly outside 
of the exact 
commensurability

Rein, Payne, Veras & Ford (2012)



Architecture and masses 
from observed KOIs

Testing stochastic migration: Method

Placing planets in a MMSN, 
further out, further apart,

randomizing all angles

Rein 2012

N-body simulation
with migration forces



Testing stochastic migration: Advantages

Comparison of 
statistical quantities
• Period ratio distribution
• Eccentricity distribution
• TTVs

Comparison of 
individual systems
• Especially interesting for 

multi-planetary systems
• Can create multiple 

realizations of each system

No synthesis of a planet 
population required
• Observed masses, architectures
• Model independent



Preliminary results

Rein 2012, Rein & Papaloizou 2009
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Future work



Planet formation models

Physical disk model
• 1D hydrodynamic simulation
• Coupled to N-body simulations

GPU based integrators
• Allows for much bigger samples

Other physical effects
• Tidal damping

Statistical comparison
• Eccentricity, TTV, etc



Other projects

Open Exoplanet Catalogue
• Collaborative project to keep track of all 

planet discoveries
• Open source, distributed, version controlled

Saturn’s rings
• Large scale collisional N-body simulations 

to model the densest parts of the rings
• Radial structure created by the viscous 

overstability

REBOUND
• The only publicly available collisional N-

body code
• Hybrid MPI/OpenMP parallelization
• Open Source
• Built-in real-time 3D visualization

Symplectic integrators
• First symplectic integrator for shearing 

sheet (Hill’s approximation)
• High precision numerical integrator for 

different problems

Debris discs
• New REBOUND module to study planet 

signatures in debris discs

Exo-moons
• Stability and evolution of exo-planet moons



Summary

The formation of multi-planetary systems 
Multi-planetary systems provide the richest, most interesting dataset related to 
extra-solar planets.

This data is essential when we want to explaining the otherwise unobservable 
formation phase of planets. 

We already learned a lot. For example, the system HD45364 formed in a massive, 
thick disk via fast migration. Other systems: HD128311, HD200964, Kepler-36. 

Very soon, we will understand how planets in the Kepler sample formed. The most 
promising idea involves a turbulent protoplanetary disk and stochastic migration.

Other ongoing/future projects
REBOUND Code
Symplectic integration methods
Saturn’s Rings

 
Open Exoplanet Catalogue
Exo-moons and Exo-Saturns
Debris discs


