Hanno Rein

The formation of multi-planetary systems

Junior Group Leader Selection Symposium, Tübingen, March 2013

Extra-solar planet census

Database

Milky Way

1. Exoplanet News

Background Information
h About / Add-ons

Period ratio distribution

Rein, Payne,Veras \& Ford (20I2)

Planet formation

Planet formation

Image credit: NASA/JPL-Caltech

Planet migration

Low mass planet, type I migration, Prometheus code

Formation scenario for HD45364

Rein, Papaloizou \& Kley 2010

Formation scenario leads to predictions

Parameter	Unit	Correia et al. (2009)	Simulation F5 b
$M \sin i$	[M ${ }_{\text {Jup }}$]	0.18720 .6579	0.18720 .6579
M_{*}	M_{\odot}]	0.82	0.82
a	AU]	$0.6813 \quad 0.8972$	$0.6804 \quad 0.8994$
e		$0.17 \pm 0.02 \quad 0.097 \pm 0.012$	$0.036 \quad 0.017$
λ	[deg]	$105.8 \pm 1.4 \quad 269.5 \pm 0.6$	352.5153 .9
ϖ^{a}	[deg]	$162.6 \pm 6.3 \quad 7.4 \pm 4.3$	$87.9 \quad 292.2$
$\sqrt{\chi^{2}}$		$\begin{gathered} 2.79 \\ 2453500 \end{gathered}$	$\begin{gathered} 2.76^{b}(3.51) \\ 2453500 \end{gathered}$
Date	[JD]		

Rein, Papaloizou \& Kley 2010

Saturn is a smaller version of the Solar System

Stochastic Migration

REBOUND code, Rein \& Papaloizou 2010, Crida et al 2010

Radial velocity planets

Cumulative period ratio in multiplanetary systems

- Periods of systems with massive planets tend to pile up near integer ratios
- Most prominent features at 4:I, 3:I, 2:I, 3:2

Kepler's transiting planet candidates

- Period ratio distribution much smoother for small mass planets
- Deficiencies near 4:3, 3:2, 2: 1
- Excess slightly outside of the exact commensurability

Rein, Payne, Veras \& Ford (2012)

Testing stochastic migration: Method

Architecture and masses from observed KOIs

Placing planets in a MMSN, further out, further apart, randomizing all angles

N -body simulation with migration forces

Testing stochastic migration:Advantages

Comparison of statistical quantities

- Period ratio distribution
- Eccentricity distribution
- TTVs

Comparison of individual systems

- Especially interesting for multi-planetary systems
- Can create multiple realizations of each system

No synthesis of a planet population required

- Observed masses, architectures
- Model independent

Preliminary results

Rein 2012, Rein \& Papaloizou 2009

Future work

Planet formation models

Physical disk model

- ID hydrodynamic simulation
- Coupled to N-body simulations

GPU based integrators

- Allows for much bigger samples

Other physical effects

- Tidal damping

Statistical comparison

- Eccentricity,TTV, etc

Other projects

REBOUND

- The only publicly available collisional N body code
- Hybrid MPI/OpenMP parallelization
- Open Source
- Built-in real-time 3D visualization

Saturn's rings

- Large scale collisional N -body simulations to model the densest parts of the rings
- Radial structure created by the viscous overstability

Exo-moons

- Stability and evolution of exo-planet moons

Symplectic integrators

- First symplectic integrator for shearing sheet (Hill's approximation)
- High precision numerical integrator for different problems

Debris discs

- New REBOUND module to study planet signatures in debris discs

Open Exoplanet Catalogue

- Collaborative project to keep track of all planet discoveries
- Open source, distributed, version controlled

Summary

The formation of multi-planetary systems

Multi-planetary systems provide the richest, most interesting dataset related to extra-solar planets.

This data is essential when we want to explaining the otherwise unobservable formation phase of planets.

We already learned a lot. For example, the system HD45364 formed in a massive, thick disk via fast migration. Other systems: HD I283II, HD200964, Kepler-36.

Very soon, we will understand how planets in the Kepler sample formed. The most promising idea involves a turbulent protoplanetary disk and stochastic migration.

Other ongoing/future projects

REBOUND Code

Symplectic integration methods Saturn's Rings

Open Exoplanet Catalogue Exo-moons and Exo-Saturns
Debris discs

