

Hanno Rein The formation of multi-planetary systems

Junior Group Leader Selection Symposium, Tübingen, March 2013

Extra-solar planet census

Period ratio distribution

Rein, Payne, Veras & Ford (2012)

Planet formation

Planet formation

Image credit: NASA/JPL-Caltech

Planet migration

Low mass planet, type I migration, Prometheus code

Formation scenario for HD45364

Rein, Papaloizou & Kley 2010

المراجع والمراجع والمراجع

Formation scenario leads to predictions

Rein, Papaloizou & Kley 2010

Saturn is a smaller version of the Solar System

Stochastic Migration

REBOUND code, Rein & Papaloizou 2010, Crida et al 2010

Radial velocity planets

Cumulative period ratio in multiplanetary systems

- Periods of systems with massive planets tend to pile up near integer ratios
- Most prominent features at 4:1, 3:1, 2:1, 3:2

Kepler's transiting planet candidates

- Period ratio distribution much smoother for small mass planets
- Deficiencies near 4:3, 3:2, 2:1
- Excess slightly outside of the exact commensurability

Rein, Payne, Veras & Ford (2012)

Testing stochastic migration: Method

Architecture and masses from observed KOIs

Placing planets in a MMSN, further out, further apart, randomizing all angles

N-body simulation with migration forces

Testing stochastic migration: Advantages

Comparison of statistical quantities

- Period ratio distribution
- Eccentricity distribution
- TTVs

Comparison of individual systems

- Especially interesting for multi-planetary systems
- Can create multiple realizations of each system

No synthesis of a planet population required

- Observed masses, architectures
- Model independent

Preliminary results

Rein 2012, Rein & Papaloizou 2009

Future work

Planet formation models

Physical disk model

- ID hydrodynamic simulation
- Coupled to N-body simulations

GPU based integrators

Allows for much bigger samples

Other physical effects

Tidal damping

Statistical comparison

• Eccentricity, TTV, etc

Other projects

REBOUND

- The only publicly available collisional Nbody code
- Hybrid MPI/OpenMP parallelization
- Open Source
- Built-in real-time 3D visualization

Symplectic integrators

- First symplectic integrator for shearing sheet (Hill's approximation)
- High precision numerical integrator for different problems

Saturn's rings

- Large scale collisional N-body simulations to model the densest parts of the rings
- Radial structure created by the viscous overstability

Exo-moons

Stability and evolution of exo-planet moons

Debris discs

 New REBOUND module to study planet signatures in debris discs

Open Exoplanet Catalogue

- Collaborative project to keep track of all planet discoveries
- Open source, distributed, version controlled

Summary

The formation of multi-planetary systems

Multi-planetary systems provide the richest, most interesting dataset related to extra-solar planets.

This data is essential when we want to explaining the otherwise unobservable formation phase of planets.

We already learned a lot. For example, the system HD45364 formed in a massive, thick disk via fast migration. Other systems: HD128311, HD200964, Kepler-36.

Very soon, we will understand how planets in the Kepler sample formed. The most promising idea involves a turbulent protoplanetary disk and stochastic migration.

Other ongoing/future projects

REBOUND Code Symplectic integration methods Saturn's Rings Open Exoplanet Catalogue Exo-moons and Exo-Saturns Debris discs